Monatshefte für Chemie © by Springer-Verlag 1981 ## Stereochemical Correlation of Diastereomeric 3-Amino- with 3-Arylamino Acids, and Their Derivatives via Stereospecific N-Phenylation by Diphenylhalonium Salts Short Communication ## Bogdan Kurtev, Ekaterina Simova*, Maya Victorova, Nikolina Berova, and Stefanka Christoskova Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria (Received 7 January 1981. Accepted 3 February 1981) Diphenylhalonium salts were used in stereospecific N-phenylation of racemic and optically active 3-amino-2,3-diphenyl-1-propanols leading to 3-anilino-2,3-diphenyl-1-propanols. The absolute configurations of the latter and of genetically related compounds were established. (Keywords: Absolute configuration; 3-Aminopropanols) Stereochemische Korrelation von diastereomeren 3-Amino- mit 3-Arylaminosäuren bzw. ihrer Derivate durch stereospezifische N-Phenylierung mit Diphenylhaloniumsalzen (Kurze Mitteilung) Durch stereospezifische N-Phenylierung mit Hilfe von Diphenylhaloniumsalzen werden racemische sowie optische aktive 3-Amino-2,3-diphenyl-1-propanole in die entsprechenden 3-Anilino-2,3-diphenyl-1-propanole übergeführt. Auf Grund dieser Umwandlung wird die absolute Konfiguration der Aminoalkohole und davon abgeleiteter Derivate ermittelt. 3-Amino- and especially 3-arylamino-2-phenylpropanoic acids and their derivatives are relatively easily accessible. Convenient synthetic methods for their preparation have been developed on the basis of base-or acid-catalyzed aldol-type reactions of carbanions from carboxylic acids or their derivatives and imines (cf.¹). Although the application of 3-arylamino compounds is rather limited, they can be used as starting materials in stereospecific syntheses of N-heterocyclic compounds (cf.²-10). ⁴⁵ Monatshefte für Chemie, Vol. 112/5 Assignment of configurations (relative or absolute) to 3-amino acids and their derivatives by chemical correlations presents no difficulties. For example, the absolute configurations of the (—)-menthyl esters of the four optically active 3-amino-2,3-diphenylpropanoic acids and of the two enantiometric pairs of 3-amino-2,3-diphenyl-1-propanols derived from the esters¹¹ were successfully correlated with the known configurations of the (—)-menthyl esters of the enantiomeric 2,3-diphenylpropanoic acids¹². However, the absolute configurations of the easily accessible (—)-menthyl ester of erythro-3-anilino-2,3-diphenyl-propanoic acid 5, as well as of (—)-erythro-3-anilino-2,3-diphenyl-1-propanol 4 and (—)-cis-2-oxo-3,4,5-triphenyl-tetrahydro-1,3-oxazine 6, obtained from the former by stereospecific transformations¹³ have not yet been established due to the limited number of N-phenylated compounds of known absolute configuration (cf. ¹⁴). A tempting possibility for a generally applicable stereochemical correlation between amino- and arylamino compounds should involve a stereospecific N-arylation of the amino compounds. Consequently we studied the behaviour of the above mentioned amino compounds towards diphenylhalonium fluoroborates. These reagents are known to phenylate compounds with a heteroatom carrying an unshared electron pair¹⁵. This property of Ph_2XBF_4 is due to their heterolytic dissociation when heated in a polar solvent thereby generating phenyl cations¹⁶. The experimental procedure consisted in heating the amino compound with a small molar excess of Ph_2XBF_4 (X=I, Br) in boiling acetonitrile. For following the reaction course and detecting the reaction products we used the TLC-technique described in 17 . The products were isolated by preparative TLC of the reaction mixtures on Al_2O_3 -TLC cards. The results are summarized in Table 1. Phenylation of the methyl esters of the diaster eomeric (\pm)-3-amino-2,3-diphenylpropanoic acids (\pm)-erythro-1 and (\pm)-threo-1 gave low yields of the corresponding methyl esters of (\pm)-3-anilino-2,3diphenylpropanoic acids (\pm)-erythro-3 and (\pm)-threo-3. When Ph_2IBF_4 was used and the reaction time extended isomerisation took place as established by TLC. Previously we had proved that only 3-anilinoesters, but no 3-aminoesters undergo retroaldol degradation and isomerisation in the presence of $AlCl_3$. Therefore it may be assumed that the phenylation step is not connected with isomerisation. The latter takes place subsequently, most probably under the influence of BF_3 generated from the fluoroborate salts. The desired stereospecific N-phenylation was successful when we used the configurationnally stable diastereomeric 3-amino-2,3-diphe- nyl-1-propanols. i.e. (\pm) -erythro-2, (\pm) -threo-2¹⁸ and optically active (+)-erythro-2¹². They were converted into the corresponding 3-anilino-2,3-diphenyl-1-propanols 4, i.e. (\pm) -erythro-4¹⁹, (\pm) -threo-4²⁰ and (-)-erythro-4¹³ (see Table 1). Table 1. Phenylation of the methyl esters of 3-amino-2,3-diphenylpropanoic acid (1) and of 3-amino-2,3-diphenyl-1-propanols (2) | Starting Compound | | $Ph_2X^+\mathrm{BF_4}^-$ | | Reaction
Time | Phenylated Product | | |---|------------------------|--------------------------|------------------------|------------------|--|----------------| | Formula;
Configuration | mmol | X | (mmol) | (h) | Formula;
Configuration | Yield
% | | (\pm) -erythro-1
(\pm) -threo-1 | $0.20 \\ 0.20$ | Br
Br | $0.26 \\ 0.26$ | 3
3 | (\pm) -erythro- $oldsymbol{3}$ (\pm) -threo- $oldsymbol{3}$ | 10
9 | | (\pm) -erythro- 2
(\pm) -erythro- 2
(+)-threo- 2 | $0.22 \\ 0.22 \\ 0.22$ | Br
I
Br | $0.28 \\ 0.26 \\ 0.28$ | 1
4
1 | (\pm) -erythro- 4
(\pm) -erythro- 4
(\pm) -threo- 4 | 50
17
45 | | (\pm) -threo-2 (\pm) -threo-2 | 0.50 | I | 0.60 | 4 | (\pm) -threo-4 Ph | 9 | | $H \longrightarrow NH_2$ | | | | | $H \longrightarrow NHPh$ | | | $H CH_2OH$ Ph | | | | | $H \longrightarrow CH_2OH$ Ph | | | (+)-erythro-
(2 R , 3 R)-2
[α] _D = + 27.8° a | 0.22 | Br | 0.28 | 1 | ()-erythro-
(2R, 3R)-4
$[\alpha]_D =49.1^{\circ b}$ | 50 | a See Ref. 12; b see Ref. 13. This chemical correlation confirms the relative configurations of the diastereomeric (\pm)-3-anilino-2,3-diphenylpropanoic acids and derivatives, deduced before on the basis of qualitative conformational analysis²¹. Since N-phenylation is stereospecific and no change occurs in the priority of the substituents at the two chiral centers in the newly obtained compounds, we can assign *erythro-4* the same absolute confi- guration as in *erytro-2*, as established before, namely 2R, 3R. Consequently the absolute configurations of the chiral centers in **5** are 2R, 3R and 4R, 5R in **6**. Therefore diphenylhalonium fluoroborates may be used successfully in stereochemical correlations of 3-amino and 3-arylamino compounds of the above mentioned type and most probably in stereochemical N-phenylations of other types of amino compounds. We are indebted to Dr. T. P. Tolstaya, Moscow University, for valuable suggestions and for a gift of Ph_2BrBF_4 . ## References - ¹ Kurtev, B., Mollov, N., Acta chim. Acad. Sci. Hung. 18, 429 (1959), C.A. 53, 21805 h; Simova, E., Kurtev, B., Mh. Chem. 96, 722 (1965). - ² Pojarlieff, I., Kurtev, B., Tetrahedron Lett. 1963, 525. - ³ Simova, E., Mladenova, M., Kurtev, B., Comm. Dept. Chem. Bulg. Acad. Sci. 3, 497 (1970), C.A. 74, 111819 w. - ⁴ Trifonov, L., Orahovats, A., Mh. Chem. 111, 1117 (1980). - 5 Simova, E., Proevska, L., Kurtev, B., C. r. Acad. Bulg. Sci. 20, 325 (1967), C.A. 67, 64301 q. - ⁶ Kurtev, B., Lyapova, M., Berova, N., Pojarlieff, I., Orahovats, A., Petrova, P., Mollov, N., Comm. Dept. Chem. Bulg. Acad. Sci. 1, 51 (1967), C.A. 71, 38882 t. - ⁷ Stefanovsky, J., Kurtev, B., Mh. Chem. **95**, 603 (1964). - ⁸ Stefanovsky, J., Kurtev, B., Mh. Chem. **98**, 2006 (1967). - ⁹ Haimova, M., Palamareva, M., Kurtev, B., Novkova, S., Spassov, S., Chem. Ber. 103, 1347 (1970). - 10 Palamareva, M., Haimova, M., Kurtev, B., Comm. Dept. Chem. Bulg. Acad. Sci. 4, 545 (1971), C.A. 77, 48173 a. - ¹¹ Berova, N., Stefanovsky, J., Kurtev, B., Haimova, M., Mollov, N., C. r. Acad. Bulg. Sci. 17, 41 (1964), C.A. 61, 10609 h. - ¹² Berova, N., Kurtev, B., Tetrahedron **25**, 2301 (1969). - ¹³ Simova, E., Beloslatinska, R., Lyapova, M., Kurtev, B., C. r. Acad. Bulg. Sci. 25, 641 (1972), C.A. 77, 101057 u. - ¹⁴ Klyne, W., Buckingham, J., Atlas of Stereochemistry. London: Chapman and Hall. 1974. - 15 Nesmeyanov, A., Makarova, L., Tolstaya, T., Tetrahedron 1, 145 (1957). - ¹⁶ Makarova, L., Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk 6, 741 (1951), C.A. 46, 7532 e. - ¹⁷ Palamareva, M., Haimova, M., Stefanovsky, J., Viteva, L., Kurtev, B., J. Chromatog. 54, 383 (1971). - ¹⁸ Kurtev, B., Mollov, N., Lyapova, M., Orahovats, A., Mh. Chem. **94**, 904 (1963). - ¹⁹ Simova, E., Kurtev, B., Comm. Dept. Chem. Bulg. Acad. Sci. 3, 349 (1970), C.A. 74, 3176 a. - ²⁰ Spassov, A., Panajotova, B., Annuaire univers. de Sofia, livre 3-chim., 81 (1959), C.A. 55, 3515. - ²¹ Kurtev, B., Mollov, N., Simova, E., Stefanovsky, J., C.r. Acad. Bulg. Sci. 13, 167 (1960), C.A. 55, 6437 b.