Monatshefte für Chemie

© by Springer-Verlag 1981

Stereochemical Correlation of Diastereomeric 3-Amino- with 3-Arylamino Acids, and Their Derivatives via Stereospecific N-Phenylation by Diphenylhalonium Salts

Short Communication

Bogdan Kurtev, Ekaterina Simova*, Maya Victorova, Nikolina Berova, and Stefanka Christoskova

Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria

(Received 7 January 1981. Accepted 3 February 1981)

Diphenylhalonium salts were used in stereospecific N-phenylation of racemic and optically active 3-amino-2,3-diphenyl-1-propanols leading to 3-anilino-2,3-diphenyl-1-propanols. The absolute configurations of the latter and of genetically related compounds were established.

(Keywords: Absolute configuration; 3-Aminopropanols)

Stereochemische Korrelation von diastereomeren 3-Amino- mit 3-Arylaminosäuren bzw. ihrer Derivate durch stereospezifische N-Phenylierung mit Diphenylhaloniumsalzen (Kurze Mitteilung)

Durch stereospezifische N-Phenylierung mit Hilfe von Diphenylhaloniumsalzen werden racemische sowie optische aktive 3-Amino-2,3-diphenyl-1-propanole in die entsprechenden 3-Anilino-2,3-diphenyl-1-propanole übergeführt. Auf Grund dieser Umwandlung wird die absolute Konfiguration der Aminoalkohole und davon abgeleiteter Derivate ermittelt.

3-Amino- and especially 3-arylamino-2-phenylpropanoic acids and their derivatives are relatively easily accessible. Convenient synthetic methods for their preparation have been developed on the basis of base-or acid-catalyzed aldol-type reactions of carbanions from carboxylic acids or their derivatives and imines (cf.¹). Although the application of 3-arylamino compounds is rather limited, they can be used as starting materials in stereospecific syntheses of N-heterocyclic compounds (cf.²-10).

⁴⁵ Monatshefte für Chemie, Vol. 112/5

Assignment of configurations (relative or absolute) to 3-amino acids and their derivatives by chemical correlations presents no difficulties. For example, the absolute configurations of the (—)-menthyl esters of the four optically active 3-amino-2,3-diphenylpropanoic acids and of the two enantiometric pairs of 3-amino-2,3-diphenyl-1-propanols derived from the esters¹¹ were successfully correlated with the known configurations of the (—)-menthyl esters of the enantiomeric 2,3-diphenylpropanoic acids¹². However, the absolute configurations of the easily accessible (—)-menthyl ester of erythro-3-anilino-2,3-diphenyl-propanoic acid 5, as well as of (—)-erythro-3-anilino-2,3-diphenyl-1-propanol 4 and (—)-cis-2-oxo-3,4,5-triphenyl-tetrahydro-1,3-oxazine 6, obtained from the former by stereospecific transformations¹³ have not yet been established due to the limited number of N-phenylated compounds of known absolute configuration (cf. ¹⁴).

A tempting possibility for a generally applicable stereochemical correlation between amino- and arylamino compounds should involve a stereospecific N-arylation of the amino compounds. Consequently we studied the behaviour of the above mentioned amino compounds towards diphenylhalonium fluoroborates. These reagents are known to phenylate compounds with a heteroatom carrying an unshared electron pair¹⁵. This property of Ph_2XBF_4 is due to their heterolytic dissociation when heated in a polar solvent thereby generating phenyl cations¹⁶.

The experimental procedure consisted in heating the amino compound with a small molar excess of Ph_2XBF_4 (X=I, Br) in boiling acetonitrile. For following the reaction course and detecting the reaction products we used the TLC-technique described in 17 . The products were isolated by preparative TLC of the reaction mixtures on Al_2O_3 -TLC cards. The results are summarized in Table 1.

Phenylation of the methyl esters of the diaster eomeric (\pm)-3-amino-2,3-diphenylpropanoic acids (\pm)-erythro-1 and (\pm)-threo-1 gave low yields of the corresponding methyl esters of (\pm)-3-anilino-2,3diphenylpropanoic acids (\pm)-erythro-3 and (\pm)-threo-3. When Ph_2IBF_4 was used and the reaction time extended isomerisation took place as established by TLC.

Previously we had proved that only 3-anilinoesters, but no 3-aminoesters undergo retroaldol degradation and isomerisation in the presence of $AlCl_3$. Therefore it may be assumed that the phenylation step is not connected with isomerisation. The latter takes place subsequently, most probably under the influence of BF_3 generated from the fluoroborate salts.

The desired stereospecific N-phenylation was successful when we used the configurationnally stable diastereomeric 3-amino-2,3-diphe-

nyl-1-propanols. i.e. (\pm) -erythro-2, (\pm) -threo-2¹⁸ and optically active (+)-erythro-2¹². They were converted into the corresponding 3-anilino-2,3-diphenyl-1-propanols 4, i.e. (\pm) -erythro-4¹⁹, (\pm) -threo-4²⁰ and (-)-erythro-4¹³ (see Table 1).

Table 1. Phenylation of the methyl esters of 3-amino-2,3-diphenylpropanoic acid
(1) and of 3-amino-2,3-diphenyl-1-propanols (2)

Starting Compound		$Ph_2X^+\mathrm{BF_4}^-$		Reaction Time	Phenylated Product	
Formula; Configuration	mmol	X	(mmol)	(h)	Formula; Configuration	Yield %
(\pm) -erythro-1 (\pm) -threo-1	$0.20 \\ 0.20$	Br Br	$0.26 \\ 0.26$	3 3	(\pm) -erythro- $oldsymbol{3}$ (\pm) -threo- $oldsymbol{3}$	10 9
(\pm) -erythro- 2 (\pm) -erythro- 2 (+)-threo- 2	$0.22 \\ 0.22 \\ 0.22$	Br I Br	$0.28 \\ 0.26 \\ 0.28$	1 4 1	(\pm) -erythro- 4 (\pm) -erythro- 4 (\pm) -threo- 4	50 17 45
(\pm) -threo-2 (\pm) -threo-2	0.50	I	0.60	4	(\pm) -threo-4 Ph	9
$H \longrightarrow NH_2$					$H \longrightarrow NHPh$	
$H CH_2OH$ Ph					$H \longrightarrow CH_2OH$ Ph	
(+)-erythro- (2 R , 3 R)-2 [α] _D = + 27.8° a	0.22	Br	0.28	1	()-erythro- (2R, 3R)-4 $[\alpha]_D =49.1^{\circ b}$	50

a See Ref. 12; b see Ref. 13.

This chemical correlation confirms the relative configurations of the diastereomeric (\pm)-3-anilino-2,3-diphenylpropanoic acids and derivatives, deduced before on the basis of qualitative conformational analysis²¹.

Since N-phenylation is stereospecific and no change occurs in the priority of the substituents at the two chiral centers in the newly obtained compounds, we can assign *erythro-4* the same absolute confi-

guration as in *erytro-2*, as established before, namely 2R, 3R. Consequently the absolute configurations of the chiral centers in **5** are 2R, 3R and 4R, 5R in **6**.

Therefore diphenylhalonium fluoroborates may be used successfully in stereochemical correlations of 3-amino and 3-arylamino compounds of the above mentioned type and most probably in stereochemical N-phenylations of other types of amino compounds.

We are indebted to Dr. T. P. Tolstaya, Moscow University, for valuable suggestions and for a gift of Ph_2BrBF_4 .

References

- ¹ Kurtev, B., Mollov, N., Acta chim. Acad. Sci. Hung. 18, 429 (1959), C.A. 53, 21805 h; Simova, E., Kurtev, B., Mh. Chem. 96, 722 (1965).
- ² Pojarlieff, I., Kurtev, B., Tetrahedron Lett. 1963, 525.
- ³ Simova, E., Mladenova, M., Kurtev, B., Comm. Dept. Chem. Bulg. Acad. Sci. 3, 497 (1970), C.A. 74, 111819 w.
- ⁴ Trifonov, L., Orahovats, A., Mh. Chem. 111, 1117 (1980).
- 5 Simova, E., Proevska, L., Kurtev, B., C. r. Acad. Bulg. Sci. 20, 325 (1967), C.A. 67, 64301 q.
- ⁶ Kurtev, B., Lyapova, M., Berova, N., Pojarlieff, I., Orahovats, A., Petrova, P., Mollov, N., Comm. Dept. Chem. Bulg. Acad. Sci. 1, 51 (1967), C.A. 71, 38882 t.
- ⁷ Stefanovsky, J., Kurtev, B., Mh. Chem. **95**, 603 (1964).
- ⁸ Stefanovsky, J., Kurtev, B., Mh. Chem. **98**, 2006 (1967).
- ⁹ Haimova, M., Palamareva, M., Kurtev, B., Novkova, S., Spassov, S., Chem. Ber. 103, 1347 (1970).
- 10 Palamareva, M., Haimova, M., Kurtev, B., Comm. Dept. Chem. Bulg. Acad. Sci. 4, 545 (1971), C.A. 77, 48173 a.
- ¹¹ Berova, N., Stefanovsky, J., Kurtev, B., Haimova, M., Mollov, N., C. r. Acad. Bulg. Sci. 17, 41 (1964), C.A. 61, 10609 h.
- ¹² Berova, N., Kurtev, B., Tetrahedron **25**, 2301 (1969).
- ¹³ Simova, E., Beloslatinska, R., Lyapova, M., Kurtev, B., C. r. Acad. Bulg. Sci. 25, 641 (1972), C.A. 77, 101057 u.
- ¹⁴ Klyne, W., Buckingham, J., Atlas of Stereochemistry. London: Chapman and Hall. 1974.
- 15 Nesmeyanov, A., Makarova, L., Tolstaya, T., Tetrahedron 1, 145 (1957).

- ¹⁶ Makarova, L., Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk 6, 741 (1951), C.A. 46, 7532 e.
- ¹⁷ Palamareva, M., Haimova, M., Stefanovsky, J., Viteva, L., Kurtev, B., J. Chromatog. 54, 383 (1971).
- ¹⁸ Kurtev, B., Mollov, N., Lyapova, M., Orahovats, A., Mh. Chem. **94**, 904 (1963).
- ¹⁹ Simova, E., Kurtev, B., Comm. Dept. Chem. Bulg. Acad. Sci. 3, 349 (1970), C.A. 74, 3176 a.
- ²⁰ Spassov, A., Panajotova, B., Annuaire univers. de Sofia, livre 3-chim., 81 (1959), C.A. 55, 3515.
- ²¹ Kurtev, B., Mollov, N., Simova, E., Stefanovsky, J., C.r. Acad. Bulg. Sci. 13, 167 (1960), C.A. 55, 6437 b.